Sebagailogam berat Hg termasuk logam yang mempunyai daya racun tinggi. Walaupun mekanisme keracunan merkuri di dalam tubuh belum diketahui dengan jelas, tetapi beberapa hal mengenai daya racun merkuri dapat dijelaskan sebagai berikut: 1. Semua komponen merkuri dalam jumlah cukup beracun terhadap tubuh. 2. Masing-masing komponen merkuri EkstraksiLogam Berat Merkuri Tampilan Petugas; Koleksi Nasional; Sitasi Cantuman; Kirim via Email; Ekspor Cantuman Export to EndNote; Favorit; Ekstraksi Logam Berat Merkuri (Hg) Dari Limbah Pengolahan Bijih Emas (TAILING) Menggunakan Tanaman Akar Wangi (Vetiveria zizanioides L.) Dengan Penambahan Edta Dan Kompos . Tersimpan di: Main Dapatmembuat produk dengan ukuran yang besar dan berat, dengan cara yang jauh lebih ringkas. Bisa membuat produk dengan maksimal berat hingga 100 ton. Teknik cor juga bisa digunakan untuk membuat berbagai jenis logam, sehingga praktis dan efisien. Tekniknya dapat disesuaikan dengan kebutuhan, baik kebutuhan produksi atau kebutuhan pasar. Carapengolahan emas sistim Heap Leaching adalah peroses pengolahan atau pengambilan bijih emas dengan melarutkan bijih emas dalam larutan natrium sianida yang dilakukan dengan cara menyiram berulang - ulang batuan atau kerikil yang mengandung emas. Setelah logam terlarut kemudian dilakukan penangkapan logam terlarut tersebut dengan menggunakan karbon aktif. tambangyang dikelola seperti: Coal, Trash, Gamping Ston, Pasir Kuarsa, dan baru-baru ini juga ditemukan penambangan emas baru disepanjang aliran sungai di Langkat (Dinas Pertambangan dan Energi di Indonesi, 2010). untuk mengikat emas dan menghasilkan limbah Hg dan logam berat lainnya dari hasil pemurnian emas. Berdasarkan hasil penelitian Contohlimbah B3 dalam kehidupan sehari hari dan di lingkungan rumah kita, misalnya seperti buangan produk yang tidak memenuhi standar yang aman bagi lingkungan atau sisa bahan maupun tumpahan bahan kimia yang sudah kadaluarsa. Bahkan beberapa di antaranya bersifat mudah meledak, mudah terbakar, beracun, bersifat korosif dan bisa menghasilkanlimbah cair yang berbahaya dan beracun (B3) (Nurhasni, 2013) berbahaya seperti logam berat sehingga jumlah seluruhnya mencapai + 40 jenis, pertambangan, Adapunbeberapa jenis logam berat yang ikut terangkat dari perut bumi adalah Hg (merkuri), As (Arsen), Cd (Cadmium), Pb (timah) dan emas itu sendiri. Dari proses pengolahan tersebut tentu saja hanya bijih emas yang diambil, dan logam berat yang lain tentu saja dialirkan menjadi limbah halus melalui pipa tailing ke Teluk Buyat. Dalamsetiap kegiatan produksi, selain dihasilkan suatu produk yang mempunyai nilai tambah tinggi, juga dihasilkan limbah baik limbah padat, cair, maupun gas, termasuk di dalamnya kegiatan industri pertambangan dan kimia yang menggunakan bahan baku dari bahan galian tambang. Beberapa jenis industri kimia yang menghasilkan limbah padat antara lain PASCAPENAMBANGAN EMAS DI KALIMANTAN TENGAH TIM PENELITI Dr. Liswara Neneng, M.Si. (Peneliti Utama) polutan lingkungan sebagai sumber makanan untuk menghasilkan energi, dengan cara Metode ini digunakan terutama untuk menyerap limbah yang mengandung logam berat. 13 4. Rizofiltrasi (Sistem hidroponik untuk pembersihan air) Apabilaion-ion logam berasal dari logam berat maupun yang bersifat racun seperti Pb, Cd ataupun Hg, maka air yang mengandung ion-ion logam tersebut sangat berbahaya bagi tubuh manusia, air tersebut tidak layak minum. Limbah industri yang berbahaya antara lain yang mengandung logam dan cairan asam. Misalnya limbah yang dihasilkan industri Dimanakegiatan yang membutuhkan logam seperti merkuri atau cairan raksa yang digunakan untuk memisahkan logam emas dari batu-batuan, pasir, dan juga tanah. Hasil akhir dari kegiatan pertambangan tersebut akan menghasilkan limbah logam berat cair yang tidak dapat dibuang langsung pada badan air dan memerlukan pengolahan limbah terlebih dahulu. Limbahcair, karena fisiknya berbentuk cair. Limbah Gas, Jenis limbah yang dihasilkan terutama berupa material tambang, seperti logam dan batuan. Limbah pariwisata. Kegiatan wisata menimbulkan limbah yang berasal dari sarana transportasi yang membuang limbahnya ke udara, dan adanya tumpahan minyak dan oli yang dibuang oleh kapal atau perahu limbahindustry teksil. Sedangkan penelitian Raharjo dkk (2012) mengungkapkan penggunaan arang aktif dari sekam dan tempurung kelapa mampu menyerap Logam Cu : 6,95 ppm dan Hg : 7,08 ppm pada lahan tambang emas. Demikian dengan percobaan yang dilakukan kedua bahan tersebut dengan dosis 15% dan 30 % dapat menurunkan ramahlingkungan oleh karena itu banyak sekali permasalahan lingkungan yang timbul di sekitar tambang emas. Lahan bekas tambang menyisakan lahan yang tandus, kering dan mengandung logam- logam yang tidak ekonomis, sehingga perlu dilakukan reklamasi. Proses pelapukan mineral logam seperti: sinabar, pirit, kalkopirit, galena, arsenopirit akan IglD. JAKARTA - Petambang emas skala kecil baik yang resmi maupun ilegal masih menjadi penyumbang terbesar terhadap limbah bahan berbahaya dan beracun B3 berupa Prabowo, Penasehat Senior Unit Manajemen Lingkungan Hidup United Nations Development Program UNDP menyampaikan menurut data di Indonesia limbah B3 berupa merkuri yang dihasilkan dan terlepas ke lingkungan dari industri skala kecil sebanyak 340 ton m3 per tahun.“Sekitar 60% [dari 340 ton m3] berasal dari sektor petambang emas. Dari 60% itu 60% terlepas ke udara, 20% ke air dan selebihnya ke dalam tanah,” kata Agus di Jakarta, Selasa 26/3/2019.Agus juga mengatakan bahwa Indonesia disebut sebagai negara nomor tiga yang melepaskan merkuri tersebut ke lingkungan. Agus melihat ada tantangan besar untuk menyelesaikan masalah ini. Di mana pemerintah dan para stakeholder terkait harus mau merayu’ para penambang emas untuk berhenti menggunakan merkuri dalam proses produksi merkuri merupakan bahan kimia yang sangat berbahaya baik bagi lingkungan maupun kesehatan dan kendala utama saat ini adalah fakta bahwa merkuri diperjual belikan secara umum. “Sekarang bagaimana caranya agar para petambang emas itu mau untuk menghilangkan mercury tetapi dengan pendekatan bisnis dan praktek yang sehat, kita harus mencari cara-cara yang elit, jadi sambil mereka [petambang emas] berubah [pola produksinya] dengan cara yang tetap menguntungkan mereka,” yang dikenal sebagai air raksa/quicksilver, adalah logam putih keperakan yang sangat beracun yang cair pada suhu ruangan dan mudah menguap. Menurut United Nations Environment Programme UNEP, begitu dilepaskan, merkuri dapat menjangkau jarak yang jauh dan bertahan di lingkungan serta bersirkulasi dengan udara, air, tanah dan organisme hidup. Paparan merkuri yang tinggi merupakan risiko serius bagi kesehatan manusia dan lingkungan. Cek Berita dan Artikel yang lain di Google News Editor Bunga Citra Arum Nursyifani Konten Premium Nikmati Konten Premium Untuk Informasi Yang Lebih Dalam › Pertambangan emas tanpa izin di sejumlah daerah menimbulkan persoalan. Pencemaran logam berat berupa limbah merkuri atau air raksa mengancam kesehatan warga dan lingkungan. KOMPAS/NIKSON SINAGA Para pekerja tambang emas rakyat melakukan aktivitas penggalian dengan mesin dompeng di Kecamatan Batang Natal, Kabupaten Mandailing Natal, Sumatera Utara, Selasa 12/11/2019. Meskipun tidak menggunakan bahan kimia berbahaya seperti merkuri dan sianida, pertambangan itu membuat lubang besar dan air yang keruh di sepanjang Sungai Batang KOMPAS — Areal seluas 496 hektar di Indonesia masih terkontaminasi limbah bahan beracun dan berbahaya atau B3 yang berasal dari pencemaran merkuri akibat penambangan emas skala kecil dan tanpa izin. Upaya mempercepat pemulihan tanah terkontaminasi dan pencegahan peredaran serta perdagangan merkuri ilegal agar terus Lingkungan Hidup Kementerian Perencanaan Pembangunan Nasional PPN/Badan Perencanaan Pembangunan Nasional Bappenas Medrilzam mengemukakan, seluas 4,96 juta meter persegi atau 496 hektar lahan terkontaminasi tersebut berasal dari kegiatan pertambangan dan manufaktur, baik dioperasikan secara individu maupun terlembaga. Data terakhir pada 2020 yang diolah Bappenas menunjukkan, sampai saat ini masih terdapat 197 titik penambangan emas skala kecil di berbagai wilayah di Indonesia. Dari jumlah tersebut, 15 titik berada di kawasan taman nasional atau cagar bekerja sama dengan Kementerian Energi dan Sumber Daya Mineral mencoba untuk melembagakan penambangan emas skala kecil ini untuk membangun pertambangan skala rakyat tetapi memiliki ketentuan yang benar. Haruki Agustina”Terdapat juga tiga lokasi penambangan batu sinabar sebagai mineral mengandung merkuri. Dari catatan kami, sinabar ini berpotensi didistribusikan ke setidaknya lima lokasi lain di Indonesia,” ujar Medrilzam dalam webinar bertajuk ”Merkuri dalam Tanah dan Lahan Terkontaminasi Merkuri”, Kamis 29/4/2021.KOMPAS/YOLA SASTRA Para petambang menggunakan mesin pompa air dan alat dulang saat beraktivitas di tambang emas ilegal sekitar Sungai Pamong Besar, Nagari Lubuk Gadang, Kecamatan Sangir, Solok Selatan, Sumatera Barat, Senin 25/11/2019. Mereka mencari emas dari sisa material petambang yang menggunakan ekskavator. Para petambang ini menggunakan merkuri untuk mengikat mengurangi dampak merkuri atau air raksa Hg ini, Medrilzam memandang perlunya mendorong pelegalan penambangan emas tanpa izin dengan memberikan pendampingan dan sejumlah bantuan teknis atau nonteknis. Kegiatan penambangan ilegal dengan merkuri diharapkan dapat berkurang jika pemerintah memberikan izin usaha pertambangan rakyat dan menutup seluruh kegiatan tambang sinabar secara permanen.”Larangan impor sudah tertuang dalam peraturan menteri perdagangan, tetapi ada catatan Indonesia masih menjadi produsen sekaligus eksportir merkuri pada 2016. Kita perlu terus memperketat pengawasan terhadap ekspor impor merkuri, khususnya menyusun kebijakan pelarangan ekspor sebagai komitmen pemerintah,” memitigasi pencemaran merkuri jangka menengah maupun panjang, Bappenas menerapkan tiga strategi kunci. Tiga strategi tersebut adalah memperkuat sistem peringatan dini bencana lingkungan, memperkuat kapasitas sumber daya manusia untuk pemantauan hingga penegakan hukum, serta mempercepat penyusunan rencana aksi daerah pengurangan dan penghapusan juga Aturan Pelarangan Impor Merkuri Perlu DiperjelasPenguatan peringatan sistem dini bencana lingkungan dilakukan melalui sejumlah langkah, seperti peningkatan kapasitas laboratorium beserta peralatannya dan pengembangan baku mutu lingkungan. Pada 2020, pemerintah telah membangun laboratorium merkuri dan metrologi lingkungan melalui surat berharga syariah negara. Laboratorium ini dapat melakukan uji merkuri di dalam larutan, air, udara, padatan, dan biota.”Kami berharap laboratorium yang sudah dibangun ini dapat mengembangkan jaringan penelitian dan pemantauan merkuri di Indonesia sekaligus memperkuat surveilans. Laboratorium ini juga bisa menjadi pusat laboratorium merkuri lainnya di Indonesia dan menjadi pencapaian pemerintah dalam COP Konferensi Para Pihak 4 Minamata yang akan datang,” PESKMeski 197 titik penambangan emas skala kecil PESK termasuk ilegal dan mayoritas masih menggunakan merkuri, Direktur Pemulihan Kontaminasi dan Tanggap Darurat Limbah B3 Kementerian Lingkungan Hidup dan Kehutanan KLHK Haruki Agustina memandang kegiatan tersebut terdapat unsur ekonomi kerakyatan. Oleh karena itu, persoalan PESK yang menggunakan merkuri tidak bisa dengan mudah diselesaikan tanpa adanya solusi alternatif.”KLHK bekerja sama dengan Kementerian Energi dan Sumber Daya Mineral mencoba untuk melembagakan PESK ini untuk membangun pertambangan skala rakyat tetapi memiliki ketentuan yang benar. Pertambangan ini sudah mulai didata. Kedua, kami juga melakukan edukasi bahaya merkuri kepada masyarakat karena mereka tidak mengetahuinya,” mengatakan, sektor PESK menjadi target utama mengatasi merkuri di luar sektor rumah sakit. Sebab, sampai saat ini masih terdapat peralatan kesehatan di rumah sakit yang menggunakan merkuri, seperti termometer, sphygmomanometer pengukur tekanan darah, amalgam gigi, baterai dan lampu, serta alat pencahayaan.”Pemulihan lingkungan akibat merkuri menjadi skala nasional. Kami memiliki peta jalan seperti di Gunung Botak Maluku. Namun, masih ada kendala akses karena mayoritas berada di area permukiman warga. Sosialisasi dan penggantian merkuri dengan bahan yang lebih ramah lingkungan juga sudah kami lakukan,” juga Cegah Penggunaan Merkuri di Tambang Emas TamilouwPengajar Program Studi Ilmu Tanah Universitas Sam Ratulangi, Ronny Soputan, memaparkan, pemisahan merkuri dan emas dari matrik batuan dapat dilakukan dengan teknik pirometalurgi suhu tinggi dan hidrometalurgi menggunakan reaksi-reaksi kimia dalam larutan berair. Namun, cara terbaik yang bisa dilakukan PESK adalah dengan menyosialisasikan pemisahan emas dari batuan dengan metode ijuk.”Teknologi secanggih dan sesederhana apa pun yang diterapkan petambang emas tanpa izin tetap akan menghasilkan merkuri. Karakteristik tanah ini perlu dikaji dan diketahui. Jadi, penetapan baku mutu merkuri dalam tanah dilakukan juga berdasarkan jenis tanah tempat PESK tersebut beroperasi,” tuturnya. Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas. Indonesia memiliki berbagai macam bahan tambang yang terdapat di berbagai daerah. Minyak bumi, gas alam, emas, batubara, bijih besi, dan aspal merupakan jenis-jenis bahan tambang yang dimiliki oleh Indonesia. Salah satu jenis bahan tambang yang cukup banyak dan tersebar ketersediaannya di Indonesia adalah emas. Emas merupakan salah satu jenis bahan tambang yang memiliki nilai ekonomis sangat tinggi. Emas hampir dipasarkan dan diperdagangkan hampir di semua pasar perdagangan bahan tambang di seluruh dunia. Nilai investasi emas meningkat setiap terjadi perdagangan emas dalam jumlah yang cukup besar. Bahkan, jika dilihat lebih jauh lagi, emas memberikan kontribusi berupa devisa yang sangat besar bagi negara-negara pengekspor emas. Emas tidak terdapat di lapisan tanah yang cukup dalam dari permukaan bumi atau permukaan tanah. Bisa dikatakan bahwa bahan tambang jenis ini terletak di permukaan tanah, daerah aliran sungai yang berisi endapan-endapan mineral, bahkan di daerah hilir sungai yang merupakan akhir dari arah aliran air sungai yang mungkin saja menjadi tempat berkumpulnya arah aliran beberapa sungai yang membawa endapan-endapan mineral. Emas merupakan salah satu jenis mineral yang memiliki banyak manfaat. Jenis mineral ini dapat digunakan sebagai bahan konduktor pengantar panas di beberapa jenis alat elektronik. Namun, kegunaan emas yang utama adalah sebagai bahan perhiasan berupa kalung, emas, cincin, dan lain sebagainya. Jadi, secara garis besar, emas memiliki berbagai manfaat untuk kehidupan manusia. Untuk mendapatkan emas yang terletak di permukaan tanah ataupun yang terletak di daerah aliran sungai tidaklah terlalu sulit. Pencariannya hanya mempergunakan alat-alat yang sederhana. Teknik pencarian dan pengolahan limbahnya sangat sederhana. Namun, untuk mendapatkan emas yang terdapat di dalam lapisan tanah dengan kedalaman tertentu, pencarian emas perlu dipergunakan alat-alat teknologi dan teknik pencarian yang cukup sulit. Survey lokasi merupakan salah satu kegiatan awal yang diperlukan untuk mengetahui jumlah ketersediaan emas, posisi atau letak emas, dan kedalaman emas dari permukaan tanah. Daerah yang memiliki banyak ketersediaan emas tentu saja harus menjadi basis atau sumber pencarian dan pengolahan limbah hasil eksplorasi emas. Daerah-daerah inilah yang kemudian menjadi daerah-daerah tambang emas yang mungkin saja alam dan lingkungannya dapat rusak karena adanya kegiatan penambangan emas ini. [caption id="attachment_275196" align="alignleft" width="298" caption="Ilustrasi-Tambang Emas/Admin Indonesia memiliki banyak tambang emas yang tersebar mulai dari Pulau Sumatra, Pulau Jawa, Pulau Kalimantan, dan Papua. Cadangan emas di Indonesia cukup besar. Ini dapat dilihat dari jumlah tersebarnya daerah tambang-tambang emas di Indonesia. Salah satu daerah tambang emas dengan jumlah kandungan emas yang sangat besar terletak di daerah Pegunungan Jayawijaya yang terletak di Provinsi Papua Barat. Derah ini hanya memiliki satu tempat tambang emas, yaitu tambang emas Grasberg. Tambang Grasberg adalah tambang emas terbesar di dunia dan tambang tembaga ketiga terbesar di dunia. Tambang ini terletak di provinsi Papua di Indonesia dekat latitude -4,053 dan longitude 137,116, dan dimiliki oleh Freeport yang berbasis di AS dengan pembagian hasil tambang mencapai Rio Tinto Group mendapatkan 13%, Pemerintah Indonesiamendapatkan dan PT Indocopper Investama Corporation mendapatkan 9%. Operator tambang ini adalah PT Freeport Indonesia, yaitu anak perusahaan dari Freeport McMoran Copper and Gold. Biaya membangun tambang di atas gunung sebesar 3 milyar dolar AS. Pada 2004, tambang ini diperkirakan memiliki cadangan 46 juta ons emas. Pada 2006 produksinya adalah ton tembaga; gram emas; dan gram perak. Awal dari ditemukan tambang emas ini berawal dari geologisBelandaJean-Jacquez Dozy yang mengunjungi Indonesia pada tahun 1936 untuk menskala glasierPegunungan Jayawijaya di provinsi Irian Jaya di Papua Barat. Dia membuat catatan di atas batu hitam yang aneh dengan warna kehijauan. Pada 1939, dia mengisi catatan tentang Ertsberg bahasa Belanda untuk "gunung ore". Namun, peristiwa Perang Dunia II menyebabkan laporan tersebut tidak diperhatikan. Dua puluh tahun kemudian, geologis Forbes Wilson, bekerja untuk perusahaan pertambangan Freeport, membaca laporan tersebut. Dia dalam tugas mencari cadangan nikel, tetapi kemudian melupakan hal tersebut setelah dia membaca laporan tersebut. Dia memutuskan untuk menyiapkan perjalanan untuk memeriksa Ertsberg. Ekspedisi yang dipimpin oleh Forbes Wilson dan Del Flint, menemukan deposit tembaga yang besar di Ertsberg pada 1960. Penghasilan tembaga Grasberg meningkat dari ton pada 2004 menjadi ton pada 2005. Produksi emas meningkat dari 1,58 juta ons menjadi 3,55 juta ons. Jumlah produksi emas di tambang ini merupakan yang terbesar di dunia. Namun, jika dilihat dari jumlah pembagian hasil tambang emas ini, Pemerintah Indonesia hanya mendapatkan bagian yang sangat kecil. Bagian yang sangat besar diterima oleh operator penambangan yang mendapatkan bagian lebih dari 50%. Ini tentu saja sangat menyedihkan mengingat tambang emas Grasberg berada di wilayah Indonesia dan dimiliki oleh masyarakat Provinsi Papua Barat yang notabene merupakan salah satu provinsi yang terdapat di Indonesia. Indonesia memiliki banyak perusahaan yang bergerak di dalam bidang penambangan emas. Seperti Borneo Gold Corporation, yaitu perusahaan tambang emas yang melakukan kegiatan penambangan emas di Pulau Kalimantan. Perusahaan ini berkantor pusat di Toronto, Kanada. PT Freeport Indonesia yang merupakan perusahaan tambang emas dari Amerika Serikat. Perusahaan ini melakukan kegiatan penambangan di Provinsi Papua. Kalimantan Gold merupakan perusahaan tambang emas dan tembaga. Perusahaan ini berada di Palangkaraya, Kalimantan Selatan. PT Kelian Equatorial Mining adalah perusahaan tambang emas pit terbuka yang melakukan kegiatan penambangan di Kelian, Kutai Barat, Kalimantan Timur. Perusahaan ini berkantor pusat di Balikpapan. Logam Mulia merupakan anak perusahaan dari PT Aneka Tambang Tbk, Unit Pengolahan dan Pemurnian Logam Mulia. Memproduksi emas batangan, koin emas, dan lain-lain. Berkantor pusat di Jakarta. PT Mamberamo Indobara merupakan perusahaan tambang yang bergerak di bidang tambang batubara, emas, dan minyak gas. Lokasi tambang berada di daerah Mamberamo, Papua. Perusahaan ini berkantor pusat di Kota Legenda, Bekasi. PT Nusa Halmahera Minerals merupakan perusahaan yang bergerak di pertambangan emas. Perusahaan ini melakukan kegiatan pertambangan di Pulau Halmahera, Maluku Utara. Perusahaan ini berkantor pusat di Jakarta. PT Southern Arc Minerals Inc Kanada dan PT Selatan Arc Minerals merupakan perusahaan tambang emas dan tembaga. Kantor pusat berada di Graha Krama Yudha, Warung Jati Barat, Jakarta Selatan. Tambang perusahaan ini berada di beberapa lokasi, seperti Wonogiri, Lombok, dan Sumbawa. Pengolahan emas ini selain menguntungkan juga dapat memberikan beberapa efek negatif. Selain melakukan eksplorasi alam secara berlebihan, penambangan emas dan pengolahan emas akan menghasilkan limbah yang dapat mencemari lingkungan. Kasus pencemaran limbah akibat penambangan emas salah satunya terjadi di Perairan Pantai Buyat. Dugaan terjadinya pencemaran logam berat di perairan pantai Buyat karena pembuangan limbah padat tailing seharusnya tidak akan terjadi, seandainya limbah tersebut sebelum dibuang dilakukan pengolahan lebih dulu. Pengolahan limbah bertujuan untuk mengurangi hingga kadarnya seminimal mungkin bahkan jika mungkin menghilangkan sama sekali bahan-bahan beracun yang terdapat dalam limbah sebelum limbah tersebut dibuang. Walaupun peraturan dan tatacara pembuangan limbah beracun telah diatur oleh Pemerintah dalam hal ini Kementrian Lingkungan Hidup, tetapi dalam prakteknya dilapangan, masih banyak ditemukan terjadinya pencemaran akibat limbah industri. Mungkin terbatasnya tenaga pengawas disamping proses pengolahan limbah biasanya memerlukan biaya yang cukup berat adalah logam yang massa atom relatifnya besar, kelompok logam-logam ini mempunyai peranan yang sangat penting dibidang industri misalnya Kadmium Cd digunakan untuk bahan batery yang dapat diisi ulang. Kromium Cr untuk pemberi warna cemerlang atau verkrom pada perkakas dari logam. Kobalt Co untuk bahan magnet yang kuat pada loudspeker atau microphone. Tembaga Cu untuk kawat listrik. Nikel Ni untuk bahan baja tahan karat atau stainless steel. Timbal Pb untuk bahan battery atau Accu pada mobil. Seng Zn untuk pelapis kaleng. Mercury Hg dapat melarutkan emas sehingga banyak digunakan untuk memisahkan emas dari campurannya dengan tanah, bahan pengisi termometer dan dan masih banyak lagi kegunaan logam berat yang tidak mungkin saya sebutkan semuanya disini. Hanya sangat disayangkan disamping begitu banyak kegunaannya, kelompok logam-logam berat ini sangat beracun misalnya Hg, Pb Cd dan Cr dan lain-lain. Ditambah lagi sifatnya yang akumulatif di dalam tubuh manusia, dimana setelah logam berat ini masuk ke dalam tubuh manusia, biasanya melalui makanan yang tercemar logam berat. Logam berat ini tidak dapat dikeluarkan lagi oleh tubuh sehingga makin lama jumlahnya akan semakin meningkat. Jika jumlahnya telah cukup besar baru pengaruh negatifnya terhadap kesehatan mulai terlihat, biasanya logam-logam berat ini menumpuk di otak, syaraf, jantung, hati, ginjal yang dapat menyebabkan kerusakan pada jaringan yang ditempatinya. Tersebarnya logam berat di tanah, peraian ataupun udara dapat melalui berbagai hal misalnya, pembuangan secara langsung limbah industri, baik limbah padat maupun limbah cair, tetapi dapat pula melalui udara karena banyak industri yang membakar begitu saja limbahnya dan membuang hasil pembakaran ke udara tanpa melalui pengolahan lebih dulu. Banyak orang beranggapan bahwa dengan cara membakar maka limbah beracun tersebut akan hilang, padahal sebenarnya kita hanya memindahkan dan menyebarkan limbah beracun tersebut keudara. Pencemaran dengan cara ini lebih berbahaya karena udara lebih dinamis sehingga dampak yang diakibatkannya juga akan lebih luas dan membersihkan udara jauh lebih sulit. Dalam kasus Buyat, logam berat mercury kemungkinan dapat berasal dari limbah proses pemisahan biji emas atau dari tanah bahan tambangnya sendiri memang mengandung mercury. Banyak alternatif yang dapat digunakan untuk mengolah limbah yang mengandung logam berat kususnya mercury diantaranya ialah dengan teknologi Low TemperatureThermal Desorption LTTD atau dengan teknologi Phytoremediation. Pada sistem thermal desorption, material diuraikan pada suhu rendah < 300 oC dengan pemanasan tidak langsung serta kondisi tekanan udara yang rendah vakum. Dengan kondisi tersebut material akan lebih mudah diuapkan dibandingkan dalam tekanan tinggi. Jadi dalam sistem ini yang terjadi adalah proses fisika tidak ada reaksi kimia seperti misalnya reaksi oksidasi. Cara ini sangat efektif untuk memisahkan bahan-bahan organik yang mudah menguap misalnya, volatile organic compounds/VOCs, semi-volatile organic compounds SVOCs, poly aromatic hydrocarbon/PAHs, poly chlorinated biphenyl/PCBs, minyak, pestisida dan beberapa logam Cadmium, Mercury Timbal serta non logam misal Arsen, Sulfur, Chlor dan lain-lain. Material yang telah terpisah dalam bentuk uapnya akan lebih mudah untuk dikumpulkan kembali dengan cara dikondensasikan, diadsorbsi menggunakan filter, larutan atau media lain sehingga tidak tersebar kemana-mana. Dengan sistem thermal desorption material yang berbahaya di pisahkan agar lebih mudah untuk ditangani entah akan dibuang atau dimanfaatkan kembali, sedangkan bahan-bahan organik yang sukar menguap akan terkarbonisasi menjadi arang. Limbah padat yang mengandung polutan mercury dan arsen dimasukkan ke dalam sistem LTTD, limbah akan mengalami pemanasan tidak langsung dengan kondisi tekanan udara lebih kecil dari 1 atmosfer. Polutan mercury dan arsen akan menguap desorpsi, sedangkan limbah padat yang telah bersih dari polutan dapat dibuang ke tempat penampungan. Kemudian uap polutan yang terbentuk dialirkan ke dalam media pengabsorpsi absorber. Untuk menangkap uap logam mercury dapat digunakan butiran logam perak atau tembaga yang kemudian membentuk amalgam. Sedangkan untuk menangkap ion-ion mercury dan arsen dapat digunakan larutan hidroksida OH- -sulfida S2- yang akan mengendapkan ion-ion tersebut. Dalam sistem ini perlu ditambahkan wet scrubber dan filter karbon untuk menangkap partikulat dan gas-gas beracun yang mungkin terbentuk pada proses desorbsi. Keunggulan sistem ini ialah prosesnya cepat dan biaya investasi peralatan dan operasionalnya murah, unitnya dapat dibuat kecil sehingga dapat dibuat sistem yang mobil. Teknologi mengolah limbah dengan sistem Phytoremediasi, menggunakan tanaman sebagai alat pengolah bahan pencemar. Pada limbah padat atau cair yang akan diolah, ditanami dengan tanaman tertentu yang dapat menyerap, mengumpulkan, mendegradasi bahan-bahan pencemar tertentu yang terdapat di dalam limbah tersebut. Banyak istilah yang diberikan pada sistem ini sesuai dengan mekanisme yang terjadi pada prosesnya. Misalnya Phytostabilization, yaitu polutan distabilkan di dalam tanah oleh pengaruh tanaman, Phytostimulation akar tanaman menstimulasi penghancuran polutan dengan bantuan bakteri rhizosphere, Phytodegradation, yaitu tanaman mendegradasi polutan dengan atau tanpa menyimpannya di dalam daun, batang atau akarnya untuk sementara waktu, Phytoextraction, yaitu polutan terakumulasi di jaringan tanaman terutama daun,Phytovolatilization, yaitu polutan oleh tanaman diubah menjadi senyawa yang mudah menguap sehingga dapat dilepaskan ke udara, dan Rhizofiltration, yaitu polutan diambil dari air oleh akar tanaman pada sistem hydroponic. Proses remediasi polutan dari dalam tanah atau air terjadi karena jenis tanaman tertentu dapat melepaskan zat carriers yang biasanya berupa senyawaan kelat, protein, glukosida yang berfungsi mengikat zat polutan tertentu kemudian dikumpulkan dijaringan tanaman misalnya pada daun atau akar. Keunggulan sistem phytoremediasi diantaranya ialah biayanya murah dan dapat dikerjakan insitu, tetapi kekurangannya diantaranya ialah perlu waktu yang lama dan diperlukan pupuk untuk menjaga kesuburan tanaman, akar tanaman biasanya pendek sehingga tidak dapat menjangkau bagian tanah yang dalam. Yang perlu diingat ialah setelah dipanen, tanaman yang kemungkinan masih mengandung polutan beracun ini harus ditangani secara khusus. Lihat Nature Selengkapnya This research has purpose to reduce heavy metal contain in liquid waste of gold industries PT. X in Surabaya. Most of liquid waste from gold jewellery industry is an inorganic waste with high acid composition low pH. The method being used is precipitation method with some variables such as type of presipitaior, pH of solution and time of precipitation. From the research's result with CaOH2 and NaOH, the higher the pH, the higher the percentage removal of metal Cu, Ni, Zn, and Fe. The same result with variables of precipitation's time when the longer floculation time, the higher the percentage removal of metal Cu, Ni, Zn and Fe. The optimum pH that can decrease metal content Cu, Ni, Zn and Fe, is 12. The percentage of removal with additional NaOH in order are and with additional CaOH2 are meanwhile the optimum time of precipitation to decrease metal concentrate is 30 minute. So from the result the addition of CaOH2 is much better than NaOH. Keywords Heavy metals, liquid waste, presipitationAbstrakPenelitian ini bertujuan untuk menurunkan kadar logam berat pada limbah cair industri emas PT. X di Surabaya. Limbah cair dari industri perhiasan emas sebagian besar merupakan limbah anorganik dengan kandungan asam yang cukup tinggi pH rendah. Metode yang digunakan adalah metode presipitasi pengendapan dengan beberapa variabel yaitu jenis bahan pengendap NaOH dan CaOH2, pH larutan dan waktu pengendapan. Dari hasil penelitian diketahui bahwa dengan penambahan CaOH2 maupun NaOH, semakin tinggi pH, maka semakin besar pula persen penurunan logam Cu, Ni, Zn, dan Fe. Demikian pula dengan variabel waktu pengendapan maka semakin lama waktu pengendapan maka semakin besar persen penurunan logam Cu, Ni, Zn, dan Fe. pH optimum yang dapat menurunkan kadar logam Cu, Ni, Zn dan Fe adalah pada pH 12. Besarnya persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan NaOH berturut - turut adalah 99,993%, 99,877%, 99,946% dan 99,935%. Besarnya persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan CaOH2 berturut-turut adalah 99,994%, 99,936%, 99,949% dan 99,941%, sedangkan waktu pengendapan yang optimum adalah pada 30 menit. Berdasarkan hasil penelitian terlihat bahwa presipitan CaOH2, lebih baik dibanding kunci Logam berat, limbah cair, presipitasi Discover the world's research25+ million members160+ million publication billion citationsJoin for free Jurnal Teknik Kimia Indonesia Vol. 9 No. 2 Agustus 2010, 55-6155PENURUNAN KADAR LOGAM BERAT LIMBAH CAIR INDUSTRI EMAS PT. X DI SURABAYA Nyoman Puspa Asri1*, Rachmad Abadi2, Arfina Hasmawati2, dan Sita Alfian Mubarok21Jurusan Teknik Kimia, Fakultas Teknik, Universitas Supratman Surabaya Jl. Arief Rachman Hakim No. 14 Surabaya 60111 2Jurusan Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Adhitama Surabaya Jl. Arief Rachman Hakim No. 100 Surabaya 60111 Email nyoman_puspaasri Abstrak Penelitian ini bertujuan untuk menurunkan kadar logam berat pada limbah cair industri emas PT. X di Surabaya. Limbah cair dari industri perhiasan emas sebagian besar merupakan limbah anorganik dengan kandungan asam yang cukup tinggi pH rendah. Metode yang digunakan adalah metode presipitasi pengendapan dengan beberapa variabel yaitu jenis bahan pengendap NaOH dan CaOH2, pH larutan dan waktu pengendapan. Dari hasil penelitian diketahui bahwa dengan penambahan CaOH2 maupun NaOH, semakin tinggi pH, maka semakin besar pula persen penurunan logam Cu, Ni, Zn, dan Fe. Demikian pula dengan variabel waktu pengendapan maka semakin lama waktu pengendapan maka semakin besar persen penurunan logam Cu, Ni, Zn, dan Fe. pH optimum yang dapat menurunkan kadar logam Cu, Ni, Zn dan Fe adalah pada pH 12. Besarnya persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan NaOH berturut - turut adalah 99,993%, 99,877%, 99,946% dan 99,935%. Besarnya persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan CaOH2 berturut-turut adalah 99,994%, 99,936%, 99,949% dan 99,941%, sedangkan waktu pengendapan yang optimum adalah pada 30 menit. Berdasarkan hasil penelitian terlihat bahwa presipitan CaOH2, lebih baik dibanding NaOH. Kata kunci Logam berat, limbah cair, presipitasi Abstract This research has purpose to reduce heavy metal contain in liquid waste of gold industries PT. X in Surabaya. Most of liquid waste from gold jewellery industry is an inorganic waste with high acid composition low pH. The method being used is precipitation method with some variables such as type of presipitaior, pH of solution and time of precipitation. From the research's result with CaOH2and NaOH, the higher the pH, the higher the percentage removal of metal Cu, Ni, Zn, and Fe. The same result with variables of precipitation's time when the longer floculation time, the higher the percentage removal of metal Cu, Ni, Zn and Fe. The optimum pH that can decrease metal content Cu, Ni, Zn and Fe, is 12. The percentage of removal with additional NaOH in order are and with additional CaOH2 are meanwhile the optimum time of precipitation to decrease metal concentrate is 30 minute. So from the result the addition of CaOH2 is much better than NaOH. Keywords Heavy metals, liquid waste, presipitation *korespondensi Jurnal Teknik Kimia Indonesia Vol. 9 No. 2 Agustus 201056 1. Pendahuluan PT. X industri perhiasan emas di Surabaya Timur merupakan industri yang menghasilkan perhiasan dari bahan emas, dimana dalam proses pembuatan perhiasan tersebut menghasilkan limbah cair yang banyak mengandung logam berat. Apabila limbah ini langsung dibuang ke badan air maka dapat menimbulkan dampak negatif terhadap lingkungan sekitar. Limbah industri PT. X ini memiliki kandungan logam-logam berat yang dapat disetarakan dengan limbah industri electroplating. Limbah cair dari industri perhiasan emas sebagian besar merupakan limbah anorganik dengan kandungan asam yang cukup tinggi. Tabel 1. Karakteristik Limbah Cair PT. X Komponen Cu Ni Zn Fe Logam ppm 29627,79 187,5 295,75 2562,79 Baku Mutu 5 1 20 20 Tabel di atas menunjukkan bahwa kandungan logam berat yang berasal dari limbah cair PT. X seperti logam Cu, Ni, Zn, Cd dan Fe, melebihi kadar maksimum baku mutu limbah cair electroplating, sehingga perlu untuk dilakukan pengolahan limbah cair tersebut untuk mengurangi kadar logam berat sebelum di buang ke badan air. Untuk menurunkan kadar logam tersebut, PT. X telah melakukan pengolahan limbah sebelum dibuang ke badan air dengan menggunakan metode presipitasi, yaitu dengan menambahkan NaOH sebagai bahan presipitan pada pH namun kadar logam berat masih di atas ambang batas baku mutu yang diijinkan. Limbah cair PT. X berasal dari proses refinery, proses bombing dan glundung, proses pencucian dan proses pengaturan warna dan bilasan. Rachmad dkk. telah melakukan penelitian pendahuluan menggunakan sampel air limbah sebanyak 200 mL menggunakan metode Jar-tes dengan menggunakan komposisi air limbah dari keempat proses di atas sebagai variabel, dengan penambahan NaOH pada pH sekitar 8,5-10. Hasil penelitian menunjukkan bahwa pH awal limbah adalah 2, sedangkan komposisi limbah terbaik adalah 13,37% limbah dari bak penampung limbah I proses refinery, 1,96% limbah dari bak penampung limbah II proses bombing dan glundung, 5,72% limbah dari bak penampung limbah III proses pencucian, 78,95% limbah dari bak penampung limbah IV proses pengaturan warna dan bilasan, dengan penurunan kadar logam berat berkisar antara 96-98%. Roekmijati dkk. 2001, telah melakukan penelitian tentang "Presipitasi Bertahap Logam Berat Limbah Cair Industri Pelapisan Logam Menggunakan Larutan Kaustik Soda". Hasil penelitiannya menunjukkan bahwa dengan variabel pH 4,6 dan 8 tidak berpengaruh secara signifikan terhadap penurunan kadar logam berat Cu dan Fe. Dari latar belakang di atas, dapat diketahui bahwa kadar logam berat yang melebihi baku mutu pemerintah adalah logam Cu, Ni, Zn dan Fe sehingga dilakukan penelitian untuk menurunkan kadar logam-logam berat tersebut sampai sekecil mungkin dengan metode prespitasi. Banyak faktor yang mempengaruhi proses presipitasi, namun pada penelitian ini difokuskan pada variabel pH, waktu pengendapan dan jenis presipitan. Jenis presipitan yang digunakan adalah NaOH dan CaOH2. CaOH2 digunakan sebagai pembanding NaOH yang selama ini digunakan dengan harapan didapat presipitan yang lebih efektif dan efisien. Tujuan dari penelitian ini adalah untuk mendapatkan harga pH larutan dan waktu pengendapan yang memberikan persen penurunan logam Cu, Ni, Zn dan Fe yang paling besar. Di samping itu juga untuk mengetahui diantara dua presipitan yang digunakan mana yang lebih efisien. Hasil penelitian ini diharapkan dapat digunakan sebagai referensi, sebagai bahan perbandingan maupun sebagi acuan bagi industri-industri yang sejenis dalam mengolah limbah cair terutama dalam penurunan logam berat yang terkandung didalamnya. Teori Dasar Pada dasarnya logam berat dalam air buangan dapat dipisahkan dengan berbagai cara yaitu dengan proses fisika, kimia dan biologi. Proses pengambilan logam berat yang terlarut dalam suatu larutan biasanya dilakukan dengan cara prespitasi, reverse osmosis, ion exchange dan adsorbsi. Penurunan kandungan logam berat pada air limbah industri ini, dilakukan dengan proses fisik-kimia. Teknologi pengolahan air limbah yang mengandung logam-logam telah lama dikembangkan dan metode yang Penurunan Kadar Logam Berat Limbah Cair Nyoman Puspa Asri dkk. 57umumnya digunakan adalah menggunakan prinsip presipitasi. Pengolahan limbah dengan metode presipitasi merupakan salah satu metode pengolahan limbah yang banyak digunakan untuk memisahkan logam berat dari limbah cair. Dalam metode presipitasi kimia dilakukan penambahan sejumlah zat kimia tertentu untuk mengubah senyawa yang mudah larut ke bentuk padatan yang tak larut. Tiap-tiap logam memiliki karakteristik pH optimum presipitasi tersendiri, yaitu pH pada saat logam tersebut memiliki kelarutan minimum. Oleh karena itu pada limbah yang mengandung beragam logam presipitasi dilakukan secara bertahap, yaitu dengan melakukan perubahan pH pada tiap tahapannya sehingga logam-logam tersebut dapat mengendap secara bertahap. Presipitasi kimia adalah suatu prosedur standar untuk menyisihkan atau menurunkan kandungan logam berat dari air dan air limbah. Pembentukan presipitat sangat ditentukan oleh penambahan bahan kimia sebagai pengikat logam-logam. Dosis bahan kimia yang dibutuhkan relative sulit dihitung secara teoritis, umumnya ditentukan melalui percobaan dalam skala laboratorium. Percobaan dengan penentuan dosis bahan kimia untuk proses presipitasi atau koagulasi ini sering disebut sebagai Jar-Test. Adapun yang mempengaruhi percobaan dengan Jar-Test ini, antara lain 1. Bahan kimia yang dipakai untuk menurunkan kadar logam berat 2. Penambahan dosis presipitan 3. pH 4. Kecepatan pengadukan 5. Waktu pengendapan. Penurunan kadar logam berat terutama tergantung pada dua faktor, yaitu 1. Kelarutan teoritis yang membentuk spesies padatan terlarut sebagai fungsi dari konstanta kesetimbangan kelarutan, pH dan konsentrasi bahan pembentuk presipitat. 2. Pemisahan padatan dari larutan yang membawanya. Logam-logam berat umumnya dipresipitasi sebagai hidroksidanya dengan penambahan Kapur CaOH2 atau Soda Api NaOH untuk menjaga minimum PH kelarutan. Ada beberapa jenis logam yang bersifat amfoter sebagaimana ditunjukkan pada Gambar 1. Kelarutan Chrom Cr dan Seng Zn secara teoritis minimum masing-masing pada pH 7,5 dan 10,2 menunjukkan suatu kenaikan signifikan dalam konsentrasi jika di atas atau di bawah nilai pH tersebut Day dan Underwood, 1991. Gambar 1 Pengaruh pH pada logam berat sebagai Hidroksida Pada beberapa keadaan faktor-faktor di atas dapat mengganggu proses presipitasi karena kelebihan ion-ion yang berbeda muatannya yang dapat menyebabkan presipitat tidak dapat mengendap atau dipisahkan dari air yang membawanya. Oleh karenanya diperlukan suatu tambahan bahan kimia yang membantu proses presipitasi. Bahan kimia ini disebut sebagai bahan kopresipitasi yang berfungsi untuk menyerap dan menggumpalkan. Logam yang bersifat kopresipitat adalah Alumunium hidroksida AlOH3 dan Feri hidroksida FeOH3 Eckenfelder, 1989. Reaksi-reaksi Presipitasi hidroksida untuk semua logam-logam kationik M adalah sama dengan yang ditunjukkan dengan reaksi sebagai berikut MCO3+CaOH2→MOH2↓+CaCO3↓ 1 MSO4+CaOH2→MOH2↓+CaSO4↓ 2 MCl2 +CaOH2→MOH2↓+CaCl3↓ 3 MSO4+2NaOH →MOH2↓+NaSO4↓ 4 MCO3+2NaOH →MOH2↓+NaCO3↓ 5 MCl2 +2NaOH →MOH2↓+NaCl2↓ 6 Pemakaian kapur lebih menguntungkan daripada pemakaian soda api karena garam-garam kapur bersifat mengendap dan dapat bertindak sebagai kopresipitat. Kerugian pemakaian kapur adalah jumlah lumpur yang dihasilkan lebih banyak dibandingkan dengan penggunaan Jurnal Teknik Kimia Indonesia Vol. 9 No. 2 Agustus 201058 soda, tetapi lebih ekonomis karena harganya lebih murah dan mudah didapat. Untuk presipitasi logam berat limbah cair dengan menggunakan kaustik soda, sebelumnya dilakukan penambahan NaHSO340% untuk mengendapkan CrVI, karena CrVI sukar mengendap dengan menggunakan kaustik. Logam Cr mengalami kenaikan proses penyisihan dengan meningkatnya volume presipitan. Logam Cu, Fe dan Mn mengalami penurunan proses penyisihan logam dengan semakin besarnya volume presipitan. Proses penyisihan tertinggi untuk logam Cr 98,04% dicapai pada pH 8,2, Cu sebesar 99,94% pada pH 8,5, Fe sebesar 99,97°% pada pH 7, sedangkan Mn sebesar 99,5% pada pH 8,8 Roekmijati dkk., 2001. Logam berat dapat pula dipresipitasi sebagai sulfida dan karbonat seperti dalam kasus pengolahan limbah timah. Kelarutan sulfida dan karbonat umumnya lebih rendah daripada bentuk hidroksida, sehingga lebih sulit mencapai konsentrasi luaran yang diiinginkan. Gambar 2. Pengaruh pH dan amoniak pada kelarutan Cu dan Cr. Presipitasi karbonat baik untuk pengendapan logam Pb dan Ni. Pengolahan limbah yang mengandung logam kadang kala memerlukan pengolahan pendahuluan untuk menghilangkan ion-ion pengganggu proses presipitasi logam. Sianida dan amoniak dapat membentuk senyawa kompleks dengan logam-logam dan mengganggu proses presipitasi. Sianida dapat dihilangkan dengan klorinasi alkali atau dengan oksidasi katalitik, akan tetapi limbah sianida yang mengandung nikel dan perak sulit untuk dihilangkan dengan metode klorinasi alkali. Amoniak bisa dihilangkan dengan aerasi khlorinasi titik retak. Kelarutan logam-logam dengan atau tanpa adanya amoniak sebagai fungsi pH dapat dilihat pada Gambar 2. Pada presipitasi arsen dan besi, oksidasi mungkin memerlukan penggunaan klor atau permanganate. Untuk pengolahan limbah khrom, khrom heksavalensi Cr6+ harus direduksi terlebih dahulu menjadi khrom trivalent Cr3+ dan kemudian di presipitasi dengan kapur Day dan Underwood, 1991. 2. Metodologi Penelitian ini dilakukan melalui beberapa tahap meliputi persiapan sampel, percobaan dan analisis hasil. Penyiapan sampel sebanyak 200 mL dilakukan dengan mencampur keempat sumber limbah yaitu limbah dari proses refinery, limbah bombing dan glundung, proses pencucian, dan limbah pengaturan warna dan bilasan, masing masing 13,37%, 1,96%, 5,72% dan 78,95%. Proses presipitasi dengan metode Jar-Test dengan variabel pH 8, 9, 10, 11 dan 12, dengan pengadukan 100 rpm selama 10 menit. Selanjutnya larutan polimer kuriflok ditambahkan sebanyak 10 mL dan melakukan pengadukan dengan kecepatan 60 rpm selama 5 menit, serta menambahkan presipitan NaOH dan CaOH2. Sampel didiamkan sesuai variabel waktu pengendapan yaitu 15, 20, 25 dan 30 menit. Analisis hasil dilakukan dengan metoda AAS. Persen penurunan kadar logam dihitung dengan rumus %  =   − ℎ   100% 3. Hasil dan Pembahasan Analisis kandungan logam berat pada sampel awal maupun setelah eksperimen dilakukan dengan metode AAS. Gambar 3, 4, 5, dan 6 menunjukkan pengaruh pH terhadap persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan presipitan NaOH pada waktu flokulasi sesuai dengan variabel 15, 20, 25 dan 30 menit. Dari gambar-gambar tersebut terlihat bahwa semakin besar pH maka persen penurunan logam semakin besar. Pada Gambar 4. terlihat bahwa dengan penambahan bahan presipitan NaOH dengan waktu pengendapan 30 menit, persen penurunan logam Fe pada pH 8, 9, 10, 11 dan Penurunan Kadar Logam Berat Limbah Cair Nyoman Puspa Asri dkk. 59Gambar 3. Pengaruh pH terhadap persen penurunan logam Cu dengan presipitan NaOH Gambar 4. Pengaruh pH terhadap persen penurunan logam Ni dengan presipitan NaOH Gambar 5. Pengaruh pH terhadap persen penurunan Logam Zn dengan presipitan NaOH Gambar 6. Pengaruh pH terhadap persen penurunan logam Fe dengan presipitan NaOH 99,921%, 99,923%, dan 99,935%. Persen penurunan tertinggi adalah pada pH 12 yaitu sebesar 99,935%, hal ini menunjukkan bahwa semakin tinggi pH maka persen penurunan logam semakin besar. Literatur menyebutkan bahwa pH sangat berpengaruh pada saat ion-ion logam terikat dengan OH- yang ada pada presipitan NaOH dan membentuk endapan. Reaksi ikatan ion-ion logam tersebut adalah sebagai berikut Cu2+ + 2NaOH→ CuOH2↓ + 2Na+ 7 Ni2+ + 2NaOH→NiOH2 ↓ + 2Na+ 8 Zn2+ + 2NaOH→ZnOH2↓ + 2Na+ 9 Fe2+ + 2NaOH→FeOH2 ↓ + 2Na+ 10 Selain itu semakin tinggi pH maka semakin besar konsentrasi ion OH- sehingga harga hasil kali kelarutan ion-ion [Cu 2+] [OH-]2 > Ksp CuOH2, dan mengakibatkan semakin banyak Cu yang mengendap. Kondisi ini berlaku juga untuk logam-logam lainnya. Gambar 7. Pengaruh pH terhadap persen penurunan logam Cu dengan presipitan CaOH2Gambar 8. Pengaruh pH terhadap persen penurunan logam Ni dengan presipitan CaOH2Gambar 7, 8, 9, dan 10 menunjukkan pengaruh pH terhadap persen penurunan logam Cu, Ni, Zn dan Fe dengan penambahan 99,95099,95599,96099,96599,97099,97599,98099,98599,99099,9958 9 10 11 12% Penurunan LogampH20 menit25 menit96,00096,50097,00097,50098,00098,50099,00099,500100,0008 9 10 11 12% Penurunan logampH25 menit98,40098,60098,80099,00099,20099,40099,60099,800100,0008 9 10 11 12% Penurunan LogampH15 menit99,70099,75099,80099,85099,90099,9508 9 10 11 12% Penurunan LogampH15 menit20 menit25 menit30 menit99,95099,95599,96099,96599,97099,97599,98099,98599,99099,995100,0008 9 10 11 12% Penurunan LogampH30 menit96,00096,50097,00097,50098,00098,50099,00099,500100,0008 9 10 11 12% Penurunan LogampH15 menit25 menit30 menit Jurnal Teknik Kimia Indonesia Vol. 9 No. 2 Agustus 201060 presipitan CaOH2 dengan variabel waktu pengendapan 15, 20, 25, 30 menit. Gambar tersebut menunjukkan bahwa semakin besar pH maka persen penurunan masing-masing logam semakin besar. Gambar 9. Pengaruh pH terhadap persen penurunan logam Zn dengan presipitan CaOH2 Gambar 10. Pengaruh pH terhadap persen penurunan logam Fe dengan presipitan CaOH2 Pada Gambar 10 terlihat bahwa persen penurunan tertinggi adalah pada pH 12 yaitu sebesar 99,941%, hal ini menunjukkan bahwa semakin tinggi pH maka persen penurunan logam semakin besar. Dalam literatur menyebutkan bahwa pH sangat berpengaruh pada saat ion - ion logam terikat dengan OH-yang ada pada presipitan NaOH dan membentuk endapan. Reaksi ikatan ion-ion logam tersebut adalah sebagai berikut Cu2+ + CaOH2→ CuOH2↓ + Ca2+ 11 Ni2+ + CaOH2→ NiOH2↓ + Ca2+ 12 Zn2+ + CaOH2→ ZnOH2↓ + Ca2+ 13 Fe2+ + CaOH2→ FeOH2↓ + Ca2+ 14 Gambar 11 menunjukkan bahwa persen penurunan terbesar pada pH 12 dengan waktu pengendapan 30 menit adalah logam Cu baik dengan menggunakan presipitan NaOH maupun CaOH2. Besarnya persen penurunan hampir mendekati 100% yaitu 99,993% dengan menggunakan bahan presipitan CaOH2 dan 99,990% dengan menggunakan presipitan NaOH. Terlihat bahwa logam Cu sudah mengendap sempurna pada pH 12, hal ini terjadi karena cupri oksida memiliki kelarutan minimum pada pH 9,0 yaitu sebesar 10 μg/L Haas dan Vamos, 1992 sehingga untuk mendapatkan persen penurunan logam Cu yang besar diperlukan pH yang lebih besar daripada pH kelarutan minimumnya. Gambar 11. persen Penurunan logam Cu, Ni, Zn dan Fe dengan presipitan NaOH dan CaOH2 pada waktu 30 menit dan pH 12. Persen penurunan logam Ni, Fe, dan Zn berturut-turut yaitu 99,877%, 99,941 %, 99,949% dengan presipitan NaOH dan 99,936%, 9,946%, 9,946% dengan presipitan CaOH2. Penurunan logam ini lebih kecil dibandingakan dengan penurunan logam Cu. Hal ini disebabkan karena logam-logam tersebut mempunyai pH kelarutan minimum yang lebih besar pH Ni =10-11; pH Fe = 10; pH Zn = 10,5 dari pada pH kelarutan minimum Cu pH = 9 sehingga untuk mengendapkan logam-logam tersebut dibutuhkan pH yang lebih tinggi daripada pH Cu. Dari Gambar 11 juga terlihat bahwa penambahan presipitan kapur CaOH2 lebih bagus dibanding dengan menggunakan kaustic soda NaOH dalam mengurangi kadar logam, hal itu disebabkan kapur mengendapkan logam lebih cepat dan dapat bertindak sebagai kopresipitat Haas dan Vamos, 1992. Reaksi-reaksi Presipitasi hidroksida untuk semua logam-logam kationik M adalah sama dengan yang ditunjukkan dengan reaksi sebagai berikut MCO3+CaOH2→MOH2 + CaCO3↓ 15 MSO4+CaOH2→MOH2 + CaSO4↓ 16 98,40098,60098,80099,00099,20099,40099,60099,800100,0008 9 10 11 12% Penurunan LogampH25 menit99,74099,76099,78099,80099,82099,84099,86099,88099,90099,92099,94099,9608 9 10 1 1 12% Penurunan LogampH15 menit99,80099,82099,84099,86099,88099,90099,92099,94099,96099,980100,000100,020% PenurunanLogamNaOHCaOH2 Penurunan Kadar Logam Berat Limbah Cair Nyoman Puspa Asri dkk. 61MCl2 +CaOH2→MOH2 + CaCl2↓ 17 MCO3+2NaOH→MOH2 + CaCO3↓ 18 MSO4 +CaOH2→MOH2 + CaSO4↓ 19 MCl2 + CaOH2→MOH2 + CaCl2↓ 20 Perbedaan penambahan presipitan NaOH dengan CaOH2 dari segi effisiensi biaya maupun operasionalnya ditunjukkan dengan tabel di bawah Tabel 2. Perbandingan koagulan NaOH dan CaOH2 Eckenfelder, 1989 Parameter NaOH CaOH2 dihasilkan pengendapan Dari Tabel 2 di atas terlihat bahwa kerugian menggunakan kapur adalah jumlah lumpur yang dihasilkan lebih banyak dibandingkan dengan penggunaan NaOH, tetapi Lumpur yang dihasilkan sebagai limbah padat dapat diolah lagi menjadi Paving. Secara ekonomi harga kapur lebih murah dibandingkan dengan NaOH. Dari penelitian yang telah dilakukan oleh Roekmijati dkk. 2001, dalam penurunan logam berat Cu dan Fe dengan variable pH 4, 6 dan 8 tidak begitu berpengaruh terhadap penurunan kadar logam karena pH minimal dari kedua logam tersebut adalah pada pH 10 untuk logam Cu dan 12 untuk logam Fe. Penelitian ini menggunakan variabel pH 8, 9, 10, 11 dan 12 untuk menentukan pH optimum dari masing - masing logam. Dari hasil penelitian ini didapatkan bahwa pH optimum untuk logam Cu dan Fe ada di atas pH 12. Gambar 3-10 menunjukan bahwa semakin lama waktu pengendapan maka persen penurunan logam semakin besar. Persen penurunan logam optimum dicapai pada waktu 30 menit untuk presipitan CaOH2 maupun NaOH. Hal ini disebabkan bahwa semakin lama waktu pengendapan maka ikatan-ikatan logam dengan presipitan akan semakin banyak terbentuk, yang mana ikatan-ikatan logam ini akan membentuk flok-flok dan mengendap, sehingga logam yang terlarut dalam air semakin kecil dan persen penurunan logamnya akan semakin besar. Kesimpulan Dari penelitian yang telah dilakukan dapat ditarik kesimpulan sebagai berikut 1. Persen penurunan terbesar pada pH dan waktu flokulasi optimum dengan penambahan presipitan NaOH adalah logam Cu dengan persen penurunan sebesar 99,993%. Sedangkan persen penurunan terbesar pada pH dan waktu flokulasi optimum dengan penambahan presipitan CaOH2 adalah logam Cu dengan persen penurunan sebesar 99,994%. 2. Waktu optimum yang dicapai oleh presipitan NaOH dan CaOH2 dalam mengendapakan logam-logam adalah 30 menit. 3. Penambahan presipitan CaOH2 lebih baik dibandingkan NaOH karena menghasilkan persen penurunan logam Cu, Ni, Zn dan Fe lebih besar dan dari segi effisiensi biaya maupun pengolahannya. Daftar Pustaka Day, R. A. Jr.; Underwood, A. L., Analisa Kimia Kuantitatif, Edisi 4, Penerbit Erlangga, Jakarta, 1991. Eckenfelder, W. W., Jr., Industrial Water Pollution Control, 2nd Ed., McGraw-Hill International, Singapore, 1989. Haas, C. N.; Vamos, R. J., Hazardous and Industrial Waste Treatment, Prentice Hall, Engelwood Cliffs, New Jersey, 1992. Roekmijati, W. S.; Praswasti PDK. W.; Yulianti, Presipitasi Bertahap Logam Berat Limbah Cair Industri Pelapisan Logam Menggunakan Larutan Kaustik Soda, Jurusan Teknik Gas dan Petrokimia, Fakultas Teknik, Universitas Indonesia, 2001, akses Juli 2008. Patterson, J. W., Industrial Wasterwater Treatment Technology, 2nd Edition, McGraw-Hill International, Singapore, 1989. ... Berdasarkan Gambar 6 ditunjukkan bahwa proses elektrokoagulasi menggunakan elektroda Al terendah pada 9,48 pada rapat arus 1 A/dm 2 , sedangkan dengan elektroda Fe menghasilkan pH air buangan yang semakin naik dari pH 9,23 pH 9,87. Perbedaan ini disebabkan bahwa harga hasil kelarutan Ksp FeOH2 dan AlOH3 berbeda yaitu -16 dan -33 Asri et al., 2018;Heidelberger & Treffers, 1989;Rasmito, 2018. Hal tersebut berarti kedua senyawa tersebut mulai mengendap atau membentuk koagulan dengan harga pH yamg berbeda atau jumlah OHyang diperlukan untuk mengendapkannya berbeda. ...... Terdapat beberapa faktor yang mendukung terhadap proses presipitasi, diantaranya adalah bahan kimia yang dipakai untuk menurunkan kadar logam berat jenis presipitan, dosis presipitan, derajat keasaman pH, kecepatan pengadukan dan waktu pengendapan Asri et al., 2010. ...Wisni Rona AnamiMamay Maslahat Dian ArrisujayaPrecipitation of Laboratory Wastewater Heavy Metals by Natural Sulphur Sodium Sulfide Sodium sulfide Na2S from natural sulfur has been used for heavy metal precipitation from laboratory wastewater. Heavy metals in laboratory wastewater include mercury Hg, lead Pb, chromium Cr and zinc Zn. Initial laboratory wastewater testing was performed by measuring the initial pH and the concentration of heavy metals in the wastewater prior to precipitation using the atomic absorption spectrophotometer. Sulphide precipitation phase consists of variations in the concentration of NaOH, time, temperature, and volume of dissolving Na2S. Parameters for the efficiency of Hg, Pb, Zn and Cr heavy metal precipitation were the initial pH, concentration and rate of stirring of the solution. Results showed that the optimum precipitation efficiency for Zn is achieved by using 10 % Na2S solution with an efficiency of %. The most significant reduction in Cr and Hg was the use of 20 % Na2S solution with a precipitation efficiency of % and % respectively. The optimal efficiency for Pb with a 30 % Na2S solution was %. Natural sulfur can reduce the levels of heavy metals in laboratory wastewater by words Natural sulfur, Heavy metals, Precipitation, Sodium sulfide, ABSTRAKPresipitasi logam berat dari limbah cair laboratorium telah dilakukan dengan menggunakan natrium sulfida Na2S dari belerang alam. Logam berat yang terkandung dalam limbah cair laboratorium diantaranya adalah merkuri Hg, timbal Pb, kromium Cr dan seng Zn. Pengujian awal limbah laboratorium dilakukan dengan mengukur pH awal dan kadar logam berat yang terdapat dalam limbah sebelum presipitasi menggunakan pH meter dan spektrofotometer serapan atom. Tahapan presipitasi limbah oleh sulfida meliputi pembuatan variasi konsentrasi NaOH, waktu, suhu, dan volume pelarutan Na2S. Parameter efisiensi presipitasi logam Hg, Pb, Zn, dan Cr meliputi pH, Konsentrasi dan Kecepatan pengadukan. Hasil penelitian menunjukkan efisiensi pengendapan optimal untuk logam Zn terdapat pada penggunaan larutan Na2S 10% dengan efisiensi 97,93%. Larutan Na2S 20% paling banyak menurunkan logam Cr dan Hg dengan efisiensi masing-masing sebesar 99,24% dan99,76%. Efisiensi optimal untuk logam Pb berada pada penggunaan larutan Na2S 30% dengan efisiensi 99,68%. Belerang alam mampu menurunkan kadar logam berat dalam limbah cair laboratorium dengan metode kunci Belerang alam, Logam berat, Presipitasi, Natrium sulfidaR A DayA L UnderwoodDay, R. A. Jr.; Underwood, A. L., Analisa Kimia Kuantitatif, Edisi 4, Penerbit Erlangga, Jakarta, Water Pollution Control, 2 nd EdW W EckenfelderJrEckenfelder, W. W., Jr., Industrial Water Pollution Control, 2 nd Ed., McGraw-Hill International, Singapore, and Industrial Waste TreatmentC N HaasR J VamosHaas, C. N.; Vamos, R. J., Hazardous and Industrial Waste Treatment, Prentice Hall, Engelwood Cliffs, New Jersey, Bertahap Logam Berat Limbah Cair Industri Pelapisan Logam Menggunakan Larutan Kaustik Soda, Jurusan Teknik Gas dan Petrokimia, Fakultas TeknikW S RoekmijatiPdk W PraswastiYuliantiRoekmijati, W. S.; Praswasti PDK. W.; Yulianti, Presipitasi Bertahap Logam Berat Limbah Cair Industri Pelapisan Logam Menggunakan Larutan Kaustik Soda, Jurusan Teknik Gas dan Petrokimia, Fakultas Teknik, Universitas Indonesia, 2001, akses Juli 2008.Industrial Wasterwater Treatment Technology, 2 nd EditionJ W PattersonPatterson, J. W., Industrial Wasterwater Treatment Technology, 2 nd Edition, McGraw-Hill International, Singapore, 1989.

pertambangan emas menghasilkan limbah logam berat cair seperti